Note

Application of methylation analysis in the determination of the structure of disaccharides containing 2,3-diamino-2,3-dideoxy-D-glucose (GlcN3N) associated with the backbone of lipid A

Anthony P. Moran a, Dieter Scholz b and Ulrich Zähringer a

(Received August 8th, 1991; accepted November 29th, 1991)

Endotoxically active lipid A generally contains¹ a $(1 \rightarrow 6)$ -linked 2-amino-2-de-oxy- β -D-glucose (GlcN) disaccharide backbone which has phosphate groups at positions 1 and 4', and (R)-3-hydroxy- and (R)-3-acyloxy-acyl residues at positions 2, 3, 2', and 3'. Methylation analysis of the backbone, which yielded acetylated partially methylated derivatives of 2-acetamido-2-deoxy-D-glucitol (GlcNAc-ol), has proved to be valuable in the analysis of structure and such compounds have been well characterised²⁻⁵.

2,3-Diamino-2,3-dideoxy-D-glucose (GlcN3N), which occurs alone or together with GlcN, has been identified as a constituent of lipid A produced by some 25 species of bacteria from 12 genera or families^{6,7}. Moreover, GlcN3N-containing lipid A structures are considered to be potential therapeutic agents either as LPS-inhibitory or immunostimulatory compounds⁸, and thus structural investigations are desirable in order to elaborate a clear-cut structure–function relationship between these lipid A's and their biological activities. However, whether GlcN3N is a component of the lipid A backbone or a substituent on its polar head groups remained unclear^{6,7} until the first evidence based on serological data indicated a (phosphorylated) GlcN3N-containing disaccharide to be present in *Pseudomonas diminuta* lipid A⁹. The first chemical analysis of GlcN3N-containing lipid A backbone was carried out on *Campylobacter jejuni* LPS from which three disaccharides, namely, 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-deoxy-D-glucitol (1), 2-acetamido-2-deoxy-6-O-(2,3-diacetamido-2,3-dideoxy-β-D-glucopyranosyl)-D-glucitol (3), and 2,3-diacetamido-2,3-dideoxy-6-O-(2,3-diacetamido-2,3-diacetamido-2,3-diacetamido-2,3-diacetamido-2,3-diacetamido-2,3-diacetamido-2,3-diacetamido-2,3-diacetamido-2,3-diacetamido-2,3-diacetamido-2,3-dia

^a Forschungsinstitut Borstel, Institut für Experimentelle Biologie und Medizin, D-2061 Borstel (FRG)

^b Sandoz Forschungsinstitut, A-1235 Vienna (Austria)

Correspondence to: Dr. U. Zähringer, Forschungsinstitut Borstel, Institut für Experimentelle Biologie und Medizin, D-2061 Borstel, FRG.

acetamido-2,3-dideoxy- β -D-glucopyranosyl)-D-glucitol (5) were prepared from the backbone species 10 .

Except for one limited study¹¹, GLC and GLC-MS data concerning partially methylated 2,3-diacetamido-2,3-dideoxy-p-glucitol (GlcNAc3NAc-ol) acetates are lacking in the literature. We now report on the formation and identification of acetylated partially methylated derivatives of GlcNAc3NAc-ol from LPS, lipid A, and model substances during methylation analysis.

Methylation of $\mathbf{1}$ (\rightarrow **2**) followed by acetolysis, reduction (NaB²H₄), and acetylation (i.e., methylation analysis) gave (GLC-MS data) 1,5-di-O-acetyl-2-deoxy-3,4,6-tri-O-methyl-2-(N-methylacetamido)-[1-²H]glucitol (**12**), 1,6-di-O-acetyl-2-deoxy-3,4,5-tri-O-methyl-2-(N-methylacetamido)glucitol (**13**), and 6-O-acetyl-2,3-dideoxy-1,4,5-tri-O-methyl-2,3-di-(N-methylacetamido)glucitol (**16**). Likewise, **3** gave **4**, **13**, **16**, and 1,5-di-O-acetyl-2,3-dideoxy-4,6-di-O-methyl-2,3-di-(N-methylacetamido)-[1-²H]glucitol (**17**), and **5** gave **6**, **17**, and 1,6-di-O-acetyl-2,3-dideoxy-4,5-di-O-methyl-2,3-di-(N-methylacetamido)glucitol (**18**). Compounds **13** and **18** were derived via loss of MeO-1 during acetolysis ⁵. The above products reflect the (1 \rightarrow 6) linkage in **1**, **3**, and **5**.

Methylation analysis of synthetic 2,3-dideoxy-2,3-di-[(R)-3-hydroxytetrade-canamido]- α -D-glucopyranosyl phosphate⁸ (**8**) yielded **17**, which was also obtained from 2,3-dideoxy-2,3-di-[(R)-3-hydroxytetradecanamido]-D-glucopyranose (**7**) after reduction (NaB²H₄), methylation, acetolysis, and acetylation. When 2,3-dideoxy-2,3-di-[(R)-3-hydroxytetradecanamido]-D-glucopyranose 4-phosphate (**9**) was subjected to both derivatisation procedures, 1,4,5-tri-O-acetyl-2,3-dideoxy-6-O-methyl-2,3-di-(N-methylacetamido)-[1- 2 H]glucitol (**19**) was obtained. When 2-deoxy-6-O-{2,3-dideoxy-2,3-di-[(R)-3-hydroxytetradecanamido]- β -D-glucopyranosyl}-2-[(R)-3-hydroxytetradecanamido]- β -D-glucopyranose (**10**) was subjected to the chemical degradation pathway for the isolation ^{10,12} of lipid A

backbone (dephosphorylation, reduction, hydrazinolysis, and *N*-acetylation), **3** was obtained and methylation analysis gave **13** and **17**, as did direct methylation analysis of synthetic 2-deoxy-6-O-{2,3-dideoxy-2,3-di-[(R)-3-hydroxytetradecanamido]- β -D-glucopyranosyl}-2-[(R)-3-hydroxytetradecanoyl]- α -D-glucopyranosyl phosphate⁸ (**11**).

As confirmed by chemical and 31 P-NMR studies 10 , the backbone in lipid A of *C. jejuni* comprises three 1,4'-bisphosphorylated β -(1 \rightarrow 6)-linked D-hexosamine disaccharides, with the polysaccharide moiety in LPS attached at position 6' and the 1-phosphate substituted by ethanolamine. Also, the 4'-phosphate carries, in non-stoichiometric amounts, a phosphorylethanolamine residue.

When dephosphorylated lipid A was reduced (NaBH₄), and then subjected to methylation analysis, the same derivatives (i.e., 12, 13, and 16–18) were obtained as from 1, 3, and 5. Likewise, dephosphorylated LPS and lipid A yielded 13, 16, and 18. Reduced lipid A also yielded 1,4,5-tri-O-acetyl-2-deoxy-3,6-di-O-methyl-2-(N-methylacetamido)-[1-²H]glucitol (14) and 1,4,5-tri-O-acetyl-2,3-dideoxy-6-O-methyl-2,3-di-(N-methylacetamido)-[1-²H]glucitol (19). In addition to acetylated partially methylated alditols of neutral sugars, dephosphorylated LPS yielded 1,5,6-tri-O-acetyl-2-deoxy-3,4-di-O-methyl-2-(N-methylacetamido)-[1-²H]glucitol (15) and 1,5,6-tri-O-acetyl-2,3-dideoxy-4-O-methyl-2,3-di-(N-methylacetamido)-[1-²H]glucitol (20), indicating an acid-labile substituent (Kdo) at position 6' in each hexosamine of the backbone hybrid of lipid A.

All hexosamine derivatives were analysed by GLC-MS on the basis of retention time, fragmentation pattern, and molecular weight determined by CI(ammonia)-MS. In accordance with published results^{2,3,13}, GlcNAc-ol derivatives had the following absolute (and relative) retention times: 12 17.0 min (1.00), 13 17.35 min (1.02), 14 19.45 min (1.14), 15 19.55 min (1.15). The retention times and molecular weights of the GlcNAc3NAc-ol derivatives are presented in Table I. The corresponding 1,5- and 1,6-di-O-acetyl derivatives of the partially methylated GlcNAc-ol and GlcNAc3NAc-ol (12, 13, 17, and 18) were clearly separable from each other, as were the 1,4,5- and 1,5,6-tri-acetates 14, 15, 19, and 20.

In CI(ammonia)-MS, each compound yielded pseudomolecular ions at m/z [M + H]⁺ and [M + NH₄]⁺, the former having the higher intensity (spectra not shown). The EI-mass spectra of the GlcNAc-ol derivatives (12–15) agreed with

19
$$R^1 = R^2 = Ac$$
, $R^3 = Me$
20 $R^1 = Me$, $R^2 = R^3 = Ac$

those reported $^{2,3,11,13-16}$. The base peak and other characteristic fragment ions obtained in EIMS of GlcNAc3NAc-ol derivatives are listed in Table II. The following generalisations can be drawn. (a) In EIMS of acetylated partially methylated derivatives of GlcNAc3NAc-ol, cleavage of C(OMe)–C(OMe) bonds is more prevalent than of C(OMe)–C(OAc) or C(OAc)–C(OAc) bonds, as in derivatives of neutral hexitols 17 . (b) An N-methylacetamido group promotes cleavage between adjacent carbons regardless of the substituents attached thereto. (c) Cleavage between the N-methylacetamido groups (C-2–C-3 bond), and primary or secondary fragments therefrom, predominates and may yield the base peaks. (d) CI(ammonia)-MS yields more intense $[M+H]^+$ than $[M+NH_4]^+$ ions, as do acetylated partially methylated derivatives of GlcNAc-ol.

Based solely on compositional analyses, lipid A's from several sources have been reported to contain either GlcN3N monosaccharides¹¹ or disaccharides^{6,7}, the latter expressing a hybrid backbone (also termed^{6,7} mixed lipid A backbone). However, the linkage of the disaccharide has been postulated only in one instance⁹ as β , solely on the basis of serological cross-reactivity with *Salmonella* lipid A. Moreover, the position of the 4'-phosphate was also postulated only on the basis of serological data. However, application of the procedures described herein confirmed for the first time three hybrid backbones (1, 3, and 5) in the lipid A of *C. jejuni*. Surprisingly, the hybrid backbone β -D-GlcpN-(1 \rightarrow 6)-D-GlcpN3N was not detected, although it is known that the enzyme (lipid A synthase) that catalyses the formation of the disaccharide⁸ accepts a variety of GlcN analogues as substrates. The position of the 4'-phosphate could be determined by combined chemical degradation and methylation analysis. Thus, the methodologies reported here provide a basis for elucidation of the structure of GlcN3N-containing hybrid lipid A backbones.

TABLE I
GLC and CI-MS data (see Experimental)

Compound	Systematic name	Molwt "	Retention time	me
			Absolute (min)	Relative h
16	6-O-Acetyl-2.3-dideoxy-1,4,5-tri-O-methyl-2,3-di-(N-methylacetamido)glucitol	376	21.47	1.26
17	1,5-Di-O-acetyl-2,3-dideoxy-4,6-di-O-methyl-2,3-di-(N-methylacetamido)-[1-2H]glucitol	405	22.07	1.30
18	1.6-Di-O-acetyl-2,3-dideoxy-4,5-di-O-methyl-2,3-di-(N-methylacetamido)glucitol	404	23.02	1.35
61	1,4,5-Tri-O-acetyl-2,3-dideoxy-6-O-methyl-2,3-di-(N-methylacetamido)-[1-2H]glucitol	432	23.70	1.39
20	1,5,6-Tri-O-acetyl-2,3-dideoxy-4-O-methyl-2,3-di-(N-methylacetamido)-[1-2 H]glucitol	432	25.26	1.49

^a Determined by Cl(ammonia)-MS on the basis of peaks at m/z for $[M+H]^+$ and $[M+NH_4]^+$. ^b Relative to that of 1,5-di-O-acetyl-2-deoxy-3,4,6-tri-O-methyl-2-(N-methylacetamido)-[1-2-H]glucitol (17.00 min/1.00).

TABLE II

Characteristic fragment ions in EIMS

Compound Base	1	Primary	Primary fragment ions (m/z)	ns(m/z)						Characteristic daughter ions (m/z)
	peak	C-1/2	C-1/3	C-1/4	C-1/5	C-2/6	C-3/6	C-4/6	C-5/6	
91	1117	130	215	215 259 - a 331 246 - 117	- a	331	246	- 117	117	88, 112, 172, 183, 186,
17	246 159	159	244	288	F	i	246	161	117	204, 214, 227, 271 99, 112, 117, 144 154, 184,
81	117	158	243	287	331	i	246	191	117	186, 204, 214, 228, 246, 256, 300 98, 112, 116, 129, 172, 183, 186,
61	112	159	244	1	ı	١	274	189	117	204, 214, 227, 255, 289 99, 112, 117, 172, 184, 202,
20	112	159	244	1	I	1	274	681	145	214, 228, 232, 242, 246, 256, 328
										214 232 246 256 300 318

" Primary fragment ion was not observed.

EXPERIMENTAL

Lipopolysaccharide (LPS).—LPS was extracted from C. jejuni CCUG 10936 (serotype O:2) by a modified phenol-CHCl₃-light petroleum method¹⁸.

Synthetic compounds.—The crystalline tris(hydroxymethyl)aminomethane ("Tris") salts of 2,3-dideoxy-2,3-di-[(R)-3-hydroxytetradecanamido]- α -D-glucopyranosyl phosphate (**8**), 2,3-dideoxy-2,3-di[(R)-3-hydroxytetradecanamido]-D-glucopyranose 4-phosphate (**9**), and 2-deoxy-6-O-{2,3-dideoxy-2,3-di-[(R)-3-hydroxytetradecanamido]- β -D-glucopyranosyl}-2-[(R)-3-hydroxytetradecanamido]-3-O-[(R)-3-hydroxytetradecanoyl]- α -D-glucopyranosyl phosphate (**11**) were synthesised as described⁸.

Degradation and modification procedures.—Free lipid A (lacking the 1-substituent) was obtained by treatment of LPS with HCl (0.1 M, 100°, 30 min). Compounds 1, 3, and 5 were obtained by subjecting lipid A to a chemical degradation pathway developed 10,12 for the analysis of the lipid A backbone. Preparative dephosphorylation of LPS, 8 (\rightarrow 7), and 11 (\rightarrow 10) was performed with aq 48% HF at 4° for 48 h with vigorous stirring. Dephosphorylated lipid A was obtained by treatment of dephosphorylated LPS with mild acid (0.1 M HCl, 100°, 1 h).

Methylation analysis.—Methylation was performed using NaOH–Me₂SO–MeI¹⁹. Reduction with NaBH₄ or NaB²H₄ was accomplished in water at room temperature for 2 h (monosaccharides), and in aq 0.02% triethylamine (lipid A, dephosphorylated LPS, and dephosphorylated lipid A) or in 1:1 EtOH–dioxane (7 and 10) at 56° for 16 h. Acetolysis involved² 0.25 M H₂SO₄ in 95% acetic acid. Acetylation was performed with acetic anhydride–pyridine (1:1, by vol; 100°, 30 min).

GLC-MS.—GLC was performed on a Varian 3700 gas chromatograph equipped with a flame-ionisation detector and a fused-silica capillary column (25 m \times 0.32 mm i.d.) with chemically bonded SE-54 (Weeke, Mülheim, FRG). The carrier gas was H₂ at 2.5 mL/min and 0.08 MPa. The temperature of the injector port and flame-ionisation detector was 290°. Temperature programmes: monosaccharides, 150° for 3 min, then 5°/min to 300°; disaccharides, 250° for 3 min, then 5°/min to 320°.

GLC-MS was performed on a Hewlett-Packard 5985 instrument equipped with the above column and an HP-1000 data system. Helium was the carrier gas (0.1 MPa). EIMS spectra were recorded at 70 eV and CIMS spectra were obtained with ammonia as the reactant gas. The ion-source temperature was 200°.

ACKNOWLEDGMENTS

We thank H. Moll for recording the mass spectra, and the Fonds der Chemischen Industrie, Alexander von Humboldt Foundation, and Sigrid Jusélius Foundation for financial support.

REFERENCES

- 1 E.T. Rietschel, L. Brade, O. Holst, V.A. Kulshin, B. Lindner, A.P. Moran, U.F. Schade, U. Zähringer, and H. Brade, in A. Nowotny, J.J. Spitzer and E.J. Ziegler (Eds.), *Endotoxin Research Series, Vol. 1, Cellular and Molecular Aspects of Endotoxin Reactions*, Elsevier, Amsterdam, 1990, pp. 15-32
- 2 K. Stellner, H. Saito, and S. Hakomori, Arch. Biochem. Biophys., 155 (1973) 464-472.
- 3 S. Hase and E.T. Rietschel, Eur. J. Biochem., 63 (1976) 93-99.
- 4 J. Finne and H. Rauvala, Carbohydr. Res., 58 (1977) 57-64.
- 5 M. Caroff and L. Szabó, Biochem. Biophys. Res. Commun., 89 (1979) 410-413.
- 6 J. Weckesser and H. Mayer, FEMS Microbiol. Rev., 54 (1988) 143-145.
- 7 H. Mayer, J.H. Krauss, A. Yokota, and J. Weckesser, in H. Friedman, T.W. Klein, M. Nakano, and A. Nowtony (Eds.), *Endotoxin*, Plenum, New York, 1990, pp. 45–70.
- 8 P.L. Stuetz, H. Aschauer, J. Hildebrandt, C. Lam, H. Loibner, I. Macher, D. Scholz, E. Schuetze, and H. Vyplel, in A. Nowotny, J.J. Spitzer, and E.J. Ziegler (Eds.), *Endotoxin Research Series, Vol. 1, Cellular and Molecular Aspects of Endotoxin Reactions*, Elsevier, Amsterdam, 1990, pp. 129-144.
- 9 N. Kasai, S. Arata, J.-I. Mashimo, Y. Akiyama, C. Tanaka, K. Egawa, and S. Tanaka, *Biochem. Biophys. Res. Commun.*, 142 (1987) 972–978.
- 10 A.P. Moran, U. Zähringer, U. Seydel, D. Scholz, P. Stütz, and E.T. Rietschel, Eur. J. Biochem., 198 (1991) 459–469.
- 11 R. Weisshaar and F. Lingens, Eur. J. Biochem., 137 (1983) 155-161.
- 12 S. Hase and E.T. Rietschel, Eur. J. Biochem., 63 (1976) 101-107.
- 13 Z. Sidorczyk, U. Zähringer, and E.T. Rietschel, Eur. J. Biochem., 137 (1983) 15-22.
- 14 O. Holst, D. Borowiak, J. Weckesser, and H. Mayer, Eur. J. Biochem., 137 (1983) 325-332.
- 15 I.M. Helander, B. Lindner, H. Brade, K. Altmann, A.A. Lindberg, E.T. Rietschel, and U. Zähringer, Eur. J. Biochem., 177 (1988) 483-492.
- 16 A. Weintraub, U. Zähringer, H.-W. Wollenweber, U. Seydel, and E.T. Rietschel, Eur. J. Biochem., 183 (1989) 425–431.
- 17 J. Lönngren and S. Svensson, Adv. Carbohydr. Chem. Biochem., 29 (1974) 41-106.
- 18 H. Brade and C. Galanos, Eur. J. Biochem., 122 (1982) 233-237.
- 19 I. Ciucanu and F. Kerek, Carbohydr. Res., 131 (1984) 209-217.